
хер S LZ MOV / DEC 1 <> <>? <>

DOWN UNDER CLUE

Editor Treasurer

Harry Huggins Ron Allen

12 Thomas Str. 2 Orlando str.

Mitcham. 3132. Hampton. 5188.

03-873 1408 03-598 4554

Having seen the er... "MARVELS" of the ..er.. "PREMIER STATE", it is

quite a relief to return to the "SANITY" of a less boastful locale now the

finals fever is over!
Still it was quite interesting to see the "PREMIUM" shortcomings of the

adjoining state. In fact the only place I noticed Premium was on their

number plates, and that has been deleted from the newer ones. They are

learning!

The computer show was quite interesting, and well worth attending. On

display was the whole range of computers, from the mighty VZ to the "run of

the mill" IBM. The VZ was the only one I noted doing "something new". This

was in several fields, such as the Analog joystick, a mouse, speech synth.,

transmission of programs over phone lines with serial interface and modem,

a very accurate capacitance meter and an ohm meter,making use of the VZ's

(as yet not fully utilise) powers. These were further demonstrated at the

HVVZUG meeting on 5th Oct., at which I was warmly welcomed.

I have been assured that in due course all these will appear in the

HVVZUG newsletter, and'maybe we will be permitted to copy them.

I do however return with several programs that will interest our next

meeting.

The other computers were doing their usual stunts, Databases, Spread

Sheets апа Wordprocessors. The Commodores and Ataris were playing games at

which they are so good. Of note was a T.I. (Texes Instruments) controllig a

model train, entirely from a program.

I make mention of David's article, and I also mention details at end of

Games Column. It is quite an effort, and we would like to see more like it.

How about it members?

Meetings are held on the first Sunday of each month, now at 12 THOMAS

STR. MITCHAM. Any time after midday is a good time to turn up.

Last issue, in Letter to the Editor, the Data statements were missed

out. You will find them in The Hhackers Column. Sorry about that. I was

expecting another letter to editor this month, but it did'nt arrive. Also

looking forward to another SCREAM SHEET. The author should be well equiped

now to really get down to "DEAR HARRY”

A MERRY CHRISTMAS to you all, and, a very satisfactory New YEAR.
д

A DVEN TU R E G AME

W R I T I NG

Ее О В T H E ч 7 > © с / 5 9 O

By DAVID WOOD

If you have never written an adventure program before, it isn't as hard as it

seens. It's true that adventure programs are very long, and take a long time to

prepare and type in, but most of the actual program coding isn't all that

difficult. The more complicated pieces of programming, like the sections of the

program that display room descriptions and contents, or allow the computer to

understand what the player types in, don't vary much from program to program, and

can be copied when you come to write a program of your own.

There may be some of you that have never played an adventure game before. If

you haven't, there are some good programs available on VZ Down Under's Public

Domain tape #1, with a few other good adventures on the other tapes. There have
also been a few adventure programs published in this magazine — ’The Thief of
Baghdad’ (VZDU #1), ‘Silver Mountain’ (VZDU #4 - VZDU #9) and ’Merkfruit lodge’

(VZDU #23). |
With this is a sample adventure program for you to type in. it is

comparatively short, but it still won't quite fit into an unexpanded VZ3SOO. It

will fit if the following lines are deleted:
11350, 1140, 1160, 1170, 1180.
Unfortunately, when we try to add a few extras to the program, like saving and
loading of the players progress in the game so far and longer room descriptions,
you won’t be able to add these.

The saving/loading routines mentioned above haven't been included at this
stage, because the PRINT# routine doesn’t work for all types of datasette! The
routines used are quite complex and so will be discussed in a separate article.

[hey are based on the memory dump article in VZDU #7, so enthusiastic tape users,

or disk users, can add their own routines if they want to.
This program won't be available as public domain software as the second best

way to learn how to write an adventure program is to type one in. (The best way to
learn is to write опе yourself!). It may be made available on a swap basis for
other adventures, but I haven't organised anything about this yet.

If you want to enjoy playing this game, type it in fairly soon as we will look
at the program in detail in later editions — this may give too many clues on how
to solve it! Type the program in very carefully as small bugs (mistakes) can take
ages to track down. As soon as you get tired or grumpy, STOP, save your program
to tape or disk, and resume typing it in later on. Save the program before running

it for the first time, as it has some machine code routines in it, which could

make the program crash if there are any mistakes in them.
Lastly, if you have any problems understanding this, or any other of these

articles, please write to me at:

RMB 1815

Samaria Rd

Benalla Vic 3673.

I will reply to all correspondence eventually, but this may take some time as

I am doing year 12, and homework commitments must come first.

the first real article will appear in the next edition.

There are several ways to design an adventure game. The method described in this

and the next few articles is the one I personally use, but this doesn’t mean it is the

"right" way. If you prefer to use a different method of design, or programming for that

matter, then do so.
Firstly think of an object for the game - a setting for it to take place in and

some major task for the player to perform. Common goals of adventure games are to

collect some treasure, to escape from somewhere, to rescue one or more people, to solve

a mystery, to lift a curse, or to save life on earth as we know it from total

destruction, just to name a few. The setting can be in the past, the present or the

future - іп space, in a magical land or an ordinary building. To summarise, the only

limit on tasks or settings is your own imagination.

You then think of a character to be controlled by the player. Try to make it fit in

with the setting of the game. A barbarian hero would be well suited to a "Sword and

Sorcery" type game but would be rather out of place in a space adventure.

1+ you can’t think of a character or setting for your adventure, try stealing one!

Books, television and films could be used for this. You can always change the names of

them later on when you have got a few more ideas. (If you use the original names, there

could be a few copyright problems if you try to sell the game, but it is OK if you only

plan to write the game for your Own use.) Another approach you could use is to play a

game from a different type of machine until you have solved it, then write it for the

VUZ rom scratch. This was quite succesfully done by Scott Le Brun, who converted the

game "King's Quest" for the М2500, by completely rewriting the program code. The result

was the program "Knight's Quest", which is considered to be one of the best adventures

available for the expanded VZ300. There are more copyright restrictions with this

method, and the usual problems with lack of memory space.

Don't waste time trying to think of something if you don't feel like it. Games

designed like this aren't usually successful. Wait for a while and you will probably

think of something later on.

Make sure the plot of your game is one you are interested in. It takes a long time

to get from the design stage to the finished product, so if the game bores you, it is

quite likely that you will give up. I have quite a few maps lying around at home, of

adventures that never made it off the drawing board.

Once you have thought of a setting, goal and character, you need to think of some

other tasks and traps for your player before finishing the game. Completing the major

task of the game should be the climax. This part should not be easy ~ it should require

a burst of truly creative thinking. For example, if the object of the game is to

destroy a malevolent robot, typing KILL/ SMASH/ DESTROY ROBOT should not work. Instead

use something more imaginative.

eg.
The robot sees you and begins to lumber slowly towards you.

What next? DROP BANANA PEEL

The robot has tripped over the banana peel and crashes to the floor.

You have angered the robot and he is about to struggle to his feet and

throttle you.
What next? EXAMINE ROBOT

There is a small slot in the back of his neck.

What next? INSERT CARPET FLUFF
The fluff has blown all his circuits and he now can’t move a single

motor. ·

To add to this when the player goes through rooms containing carpet fluff or banana

peels, he/she is likely to consider them of questionable value and ignore them. Another

method would be leave the banana skin around a banana, and the player would be tempted

to eat the banana and throw the peel away.

Once you have thought of a few tricks and traps, you should know if you program is

going to work or not. If you can’t think of anything, it may be that your plot isn’t

А

feasible. You should be able to get some general ideas from playing other adventure
games, but never take something directly from another one. If players have played this
adventure before, they will know the solution to the problem straight away, which will
make the game rather boring. (I have come across at least three adventures where you
have to SPRAY bats or insects with an aerosol can.) Likewise, don't repeat the same
problem in the one adventure.

Remember not to make the game so long that it won't fit in the available memory or
too difficult to program. Don't make the game so complicated that the player has never
seen anything like it before. Even though they want the game to be full of new and

Original puzzles, they want it to be at least partly familiar. (Most people only read
a few different types of books, like spy stories or science fiction, but of course they
don't want each one to be exactly the same.) Also remember to not be so devious the
player has no hope of solving the problem, and, of course, not make the game so easy
that it is boring and will be solved in the first few attempts. There is a difference
between being obvious and being comprehensible. Many commercial adventures state in
their advertising that they will take many weeks to solve, and this is a major selling
point. Don’t put too many braincrunching problems at the start of the game. Give the
player a chance to explore and "become part of the game" first. While difficult
problems are definitely needed, if they are placed at a stage before the player is
"hooked" into the game, he/she will probably get frustrated and give up.

You may like to place some random events in your program. If you do this, don't use
them to kill the player for no apparent reason. Instead use them to produce different
secret passwords or combinations for each game, to randomly place an object that the
player has to find (or a monster), or to help the player overcome a situation, like
falling into a pit, where he/she would otherwise be killed. People who have played
"Castle Greystone" would know that they have to kill zombies that appear at random
around the castle with weapons that they may find in there. This is quite a reasonable
use of random events, except that often zombies appear and kill players before they
have had a chance to find a suitable weapon.

If you have thought of a few problems but are stuck for a while, start drawing your
adventure map and you will probably think of a few more ideas. When you have finished
thinking up your plot, write down all of the object words the computer will need to
understand. Sort these into lists of "gettable" objects (Übjects the player can / is
allowed to pick up and carry) and "ungettable" objects (objects that can't be picked up
by the player). This is important because the computer needs to know where any portable
object is at any one time. |

Some people think that апу gettable object should have a use, but if the player
realises this, he/she will know that they have to have every object at one stage or
another, and this would ruin the banana peel / carpet fluff effect described earlier.

It is better to have some objects having uses, some having negative effects (like a
box of gunpowder that explodes and does you grievous bodily harm every time you go into
a roon with a fire in it), and some that don't have any use at all, except to confuse
the player ("How am I supposed to unbolt that useful looking sword from off the wall,
and do I really need a broken left handed Farenheit scale thermometer ?").

Next make upa list of verbs for the player to use as input. Common verbs include
N,S,W,E (these are single letter abbreviations for the direction comands north, south,
east and west), HELP (lists all the verbs the computer knows), INV (lists what the
player is carrying), GET, LOOK, EXAMINE, OPEN, LEAVE, DROP, UNLOCK,LIGHT, etc. The HELP
command is added because the player should have enough problems as it is, without
having to work out what word to use. There is very little more frustrating than than
knowing exactly what to do, but not knowing what word to use. If the correct words for
a situation is "SCALE ROPE" and the player types "CLIMB ROPE", the computer will
probably respond with something like "YOU CAN'T DO THAT." The most obvious reaction
from the player is to assume that the rope can’t be climbed, rather than rush down to
the bookshop and buy the latest Thesaurus. The fact is that different writers use
different words for the same situation. In two different adventures I have played, one

insisted that you don’t PUSH boats - you have to LAUNCH them. The other didn't

understand what I meant by "LAUNCH," but responded perfectly when I told it to PUSH the

boat. One exception to listing all your words is that if you have any words that would

make an action rather obvious, like "VACUUM CARPET", you may prefer not to list them,

but make the words fairly usual, and tell the player that some words have been omitted.

You might like to include two words for the same action, so there aren't as many

occurrences of "YOU CAN’T DO THAT" or "I DON'T UNDERSTAND". examples of this are "LOOK"
and "EXAMINE",or “UNLIGHT" and "EXTINGUISH" (UNLIGHT isn’t a real word, but not many

people like typing or spelling big long words like EXTINGUISH). You might also like to

give them slightly different meanings. "LEAVE" and "DROP" could have the same functions

except things that are DROPped are more likely to smash, splatt, grow little green legs
and run away, etc. Avoid using words like "USE" or "KILL" – таке the player be more

specific. |
When you come to the stage where you are about to design your map, decide how many

rooms you are going to have, and draw up a grid of appropriate size. If you want to
have 64 rooms make the grid 8 x 8 squares wide, or if you want 80 rooms make it 8 x 10
squares wide, for example. The number of rooms depends on imagination and memory space.

You don't have to use a grid, but make sure there is no more than one exit from a room

in any direction - for example don't have a room with two exits to the south, both of
which lead to different rooms, or things get rather confusing. (Locations in adventure

games are generally referred to as "rooms" even though they may not be - they could be
parts of real rooms, somewhere out in the garden or in a forest.) Make each square have
side length of 2 to 3O millimetres - an inch to a little bit over an inch for the
non-metric minded - although you might need to make them smaller if you want the map to
fit on one page. Draw your map in pencil at first because you may make some mistakes,
decide that you don't want to use a part that you have already drawn in, or suddenly
think of something that would make your game much more interesting, only to find you
don't have enough space for it on your map and have to either:-
Xthrow your old map in the bin and start again.
Xleave out the idea.

You then decide where you are going to place your player at the start of the
adventure. If it is teking place in a house, a logical starting point is in the garden,
in one of the outside squares. Pencil in short descriptions for other rooms next. They
don't have to be literary masterpieces - a few words for each room, like "bedroom",
"entrance hall", or "room with locked door", will do at this stage. Draw in walls for
every exit that the player can’t move through. This is usually a double line drawn
around the boundary of the map any anywhere else you decide is impenetrable. (Again,
these are referred to as "walls", although they could be a tall and thick hedge, a rock
fall or a cliff face.) Next place a number in the top left hand corner of each
square, moving from left to right, and top to bottom, starting at one, and ending at
64, or 80, or however many squares you happen to have. The reason why we start at one,

and not zero, will become apparent when we come to write the program. Many games which
start the numbering at zero read the room descriptions from memory into a data array,
which means that the room descriptions are then in two different places in the memory
at once, which in the case of the VZ is an appalling waste of precious memory. When
writing adventure games for the VZ there isn't very much memory to play around with.

Next arrows are drawn in each square for the directions that the player can move

whilst in the square, and these are labelled with "N","GS","U" ovx "E". North is usually
taken towards the top of the page. Following this you are ready to write down your
"movement codes," which will be needed for the program. If your map is a grid system,
for each room decide for north, south, west and east (in that order) if there is an

exit in that direction, and write down a "O" if there is, and a "1" if there isn’t. For
example if in one room there are exits'to the south and east, but not to the north and

west, the movement code for that room will be "1010". Make up a movement code for each
room and write them down somewhere. If you aren't using a grid structure, ase "OO"
for any direction in which there is no exit, and the room number of the destination for

Ч

directions in which there are exits. (You should use a leading zero for rooms one to

nine.) If for example there is a room with no exits to the south or east, an exit

north to room 8, and an exit west to room 17 the movement code in this case would be
"08001700". This is where the advantages of the grid system shows most. If you make a
mistake with the movement codes, the player will find that they could move south to a
room, and then move north again, to find that the old room has magically disappeared
and been replace by another one, which is rather frustrating. mistakes in the movement
codes using the grid system are more likely to be detected, and can be fixed up by the
programmer before anyone else plays the game.

Now you have finished the map, you can "play" your game – not on the computer of
course, but on paper and in your mind. Wander around the locations, pick up any objects

and try to complete the task you have set. You might discover that you have left out a
verb that you need, or that you have hidden the key behind the impenetrable hedge, but
you can’t cut through it because the whipper snipper is locked in the shed. It is much
better to find this at an early stage such as this, where the mistake can easily be
fixed, rather than discover it when the program is nearly up and running, where at
worst you could have to redesign some of your plot and a lot of your program to remove
the error.

One problem that occurs with adventures, even for some of the larger and more
expensive computers, is what governs the items the player can carry. Some allow the
player to carry as many things as he or she likes, but often the number of items is
unrealistic unless the player has about seventeen arms. Others allow the player to
Carry a set number of items. The problem with this becomes apparent if we consider an
example from the demonstration adventure with this set of articles. Imagine that the

player is only allowed to carry three things. This means that the player couldn't carry
a key, a tape, a roll of sticky tape and a book at the same time, but could carry a`
large and very heavy rock, a fridge and a washing machine!

There are at least two possible solutions to this problem: -
~ Provide the player with, or allow the player to find early on, something in

which anything found can be carried. A bag, a box, a backpack or a wheelbarrow
are all suitable.

¬ Give each object a weight, and limit the weight a player can carry, rather
than the number of objects.

The weight limit could either be fixed, or be based on the strength of a player (if you
decide to have a strength rating in your game) at the time an attempt is made to pick
up an Object. There is no need to use a particular scale, like kilograms or ounces.
Just rate your lightest object(s) as 1 unit, and if you think something is roughly 3
times as heavy, rate it as 3 units and so forth. Your scale doesn’t need to be
particularly accurate as long as it is reasonable.

In the last paragraph, I mentioned a strength rating. Although I won’t be writing a
great deal on how to program characters for role playing games, these are some of the
attributes you might like to include if you decide to create a role playing adventure.

STRENGTH: This is by far the most important attribute in an adventure game, and one you
should include even if you aren’t writing a role playing adventure. Not only does it
govern how much a player can carry, but it also indicates the player’s general state of
health. If the strength rating reaches zero, it’s the end of the line for the player.
When the player does something silly, like drink something poisonous, points can simply
be deducted rather than respond "SORRY YOU'RE DEAD" each time a wrong action is carried
out. Of course there will be times that the player will be killed independant of the
strength rating, if he or she happens to fall off a ninety-nine foot cliff, for
example. As time goes on, particularly if the player is carrying a lot of heavy things,
the strength rating may drop due to tiredness. This can be cured by leaving some food
around for the player to eat, or somewhere to sleep. (Originally the players state of
health was indicated by a separate HEALTH rating, but both are now usually covered by
the STRENGTH rating.) <

SKILL: In role playing board games, this is important for it determines how well a blow

is aimed, while strength determined how hard the monster is hit. In computer games,
this rating could be also used to decide the result of an action where the player has
to show some form of coordination, like firing a gun or swimming, for example.
(Ambitious programmers could even include a short arcade game-type test of skill before

the start of the game to give a representative skill rating.)

HEIGHT and WEIGHT: The main uses of these are to determine whether players are big
enough to carry certain objects (irrespective of strength), or if they can cross
dangerous territory, or hide somewhere. Very few hobbits can use six foot swords, but
they would have an advantage over: giants when crossing rotten wood bridges or hiding in
hollow logs.

INTELLIGENCE: This is mostly used to determine the character type of a player during

character generation, with wizards being generally more intelligent than barbarians. It
also decides if the player can learn new skills during the game.

MAGIC ABILITY: The name says it all. Some character types will be able to do magic, and
others won't.

WEALTH: Once again the name says it all. This is used not only to indicate a player's
success, but also to allow the player to buy things he or she might need during the
game.

LUCK: This can be used to overcome situations when the player might otherwise be
killed. One good method of testing a player's luck that I came across chooses a random
number between one and ten, and compares it to the player's luck rating. If it is lower
than the luck rating, the player survives and the luck rating is decreased by on e
point. If not, it's the end for the player. Luck is only tested when the player does
something stupid, and it gives the player a chance to survive.

There are several methods ot generating a character.
- Have preset values for each attribute. This makes the game, along with non-role
playing adventures useful only until it is completed, and then it is "dead." however
this is by far the easiest situation to program, and if your program is good enough,
this shouldn't matter.
- Have several character types, each with their own attribute values. This gives
several different situatons for your game.
- Have the same situation as above, also give the player a number of modification
points. with which (s)he can add points to the various ratings. Also allow the player
to take some points off some ratings and add these to others. With this method you
would also need a subroutine which prevents particular ratings going above or below
Maximum or minimum values, and another to change the character types if the ratings are
changed drastically.
— Have all ratings randomly generated.

Before you are ready to type in the program, you should have all the computer
responses to your verbs and nouns prepared. Anything the computer doesn’t understand
will be covered by a few different "I DON’T UNDERSTAND ’SMASH’" or "TRY SOMETHING ELSE”
massages. Just make sure you make it clear what it is that the computer doesn’t
understand. There should also be a general message for situations where "YOU DON’T HAVE
THE BUCKET" (or anything else for that matter). Not only should you have messages for
verb-noun combinations that are essential for the game (all the "OK" and "YOUz TOOK THE
60-0" messages), but also for the more irrelevant or silly combinations, you make
equally silly replies - for "SWING ROPE" you could reply "THIS IS NO TIME TO PLAY
GAES!" There is mo reason why уои shouldn't have as much fun writing the game as
others have playing it! You might also like to have some interesting replies to the
coarse language that some adventurers enter (Tsk Tsk) when they are finding the going
hard.

You should also be composing your room descriptions. These should contain all the

An Ne неде" LE a г Titus rs s S Aa Ped tliis i e ph me oot a, re MS ў : ul : | ~ E ^ ч د۸د A MTA al 5 ША ую з. у у. —"IC eu б АЖайбы sl MMe ee a ek EI ne FG MBA RI T rte He гина. NE Veni Los. vir ecd dit aha y т Ope NRG thas Е i ША ый.

information the player needs to know about the room (except for the exits and the
Visible objects which are covered elsewhere, and anything the player needs to LOOK
for).

Once again, as with most other aspects of adventure game design, I can’t tell you
exactly what to do here .Check the room descriptions (or anything else for that matter)
of other adventures but remember that most players prefer original adventures. You
should be able to get a vaque idea of the lengths that you should have for each
description and perhaps the style.

If you want to have longer descriptions the text really starts to chew up the
memory. You may be able to squeeze longer descriptions in using a method of tokenising,
which stores commonly used words or phrases in the data statements as single character
tokens: (the inverse character set), in much the same way that programs are stored in
BASIC. This allows for much longer descriptions in the available memory, but looking
for common words, assigning a token for each and using these in the data statements is,
to say the least, rather tedious. You may still think it is worthwhile because of the
atmosphere a well written, but slightly longer, room description can add to a game.
This method will be discussed in more detail in a later edition. Even if you do use
this method, you must limit your descriptions to a length of 255 characters or less.
Not only will longer descriptions leave little room on the screen for possible exits,
visible objects, and a strength (or any other) rating, but they will also generate a
"STRING TOO LONG ERROR" |

if you aren’t going to use this method, you should note that most room descriptions
can begin with the words "You are", followed by "In", "On", "Aat", "Near", or "By", then
followed Бу "А", "Ап", "Тһе" оғ "Some". You can therefore leave the "You are" out of the
description and add it later on in the program, and substitute the next two words with
a number, as was done in the demonstration program. If the third or fourth word of some
descriptions are not one of those above, use a code for a blank - "" - instead.

This just about brings to an end the discussion of designing your program. You
should now be ready to start designing the program code. Yes, it's more planning!
"I don't need to plan my programs," you might say. However, even if you can write all
your other programs without planning, if you try this with an adventure, you will probably leave things out and make the program a tangled mess. Also you will have
difficulty tracking down bugs (the ones that don’t cause error messages) because you have forgotten exactly where you put that particular section, or that if you want to
add some extras to the program, like sound effects, you might find that you have run
Out of line numbers.

If you think that means you have to draw a flowchart, don't bother. I tried once,
and it quickly began to resemble a bowl of spaghetti. Even if you manage the flowchart,
it may be difficult to follow, or you could have a nervous breakdown when you discover
for the forty second time that you left something out, and because there isn't any room
for it, you have to throw it away and start again. You should instead split the program
into manageable modules and plan each one separately. these are: -
LOAD ANY MACHINE LANGUAGE ROUTINES INTO MEMORY.

BRANCH ТО INITIALISATION SUBROUTINE: (The initialisation is placed at the end of the
program because each time the program interpreter encounters a GOTO statement it goes back to the start of the program and looks through all the line numbers until it finds the right one. As this is only used once, considerable time is saved by placing it at
the end of the program.)

DISPLAY THE CURRENT LOCATION, EXITS, ETC.

ACCEPT PLAYER INPUT AND PROCESS IT INTO VERB AND NOUN.

DEAL WITH ANY INPUT THAT THE COMPUTER DOESN'T UNDERSTAND.

GREAT FLOCK OF IF... THEN STATEMENTS BRANCHING TO VARIOUS VERB ROUTINES: (or if you have an Extended BASIC - some ON - GOSUB statements. Don't ask me why the designers of

=

Соя

Fees Ex

the VZ decided to mask this command when it was already present in the ROM.)

DEAL WITH ANY EVENTS THAT HAPPEN INDEPENDANT OF THE PLAYER'S ACTION: (For example,

check to see if the player has died.)

SCREEN DEALING WITH THE PLAYER QUITTING OR DYING.

SUBROUTINE FOR PLAYER MOVEMENT.

INDIVIDUAL SUBROUTINES FOR ALL OTHER VERBS.

INITIALISATION: (Dimensioning arrays, etc)

DATA STATEMENTS: (These are placed at the end of the program for the same reason as the

initialisation.)

Here are just a few extra hints for typing in your program. Structural programming

enthusiasts will probably lynch me for saying a few of these, but our main concern is

memory, and not readability.

- Use multiple statement lines: This saves memory as each line takes five bytes just

to exist. Somewhere around half — perhaps even more - of the lines in an adventure are

IF... THEN statements so if you don't use them you will have to waste more memory

repeating the condition several times, or have a program that leapfrogs all over the

place (which structural programmers probably dislike even more.)

For example:
1790 IF (H=7562 OR H=7662) AND F(44)>0 AND C(1)=0 THEN R#="HE TAKES IT": F(64)=1: F(44)=

ғ(44)-1: RETURN |
If you didn’t use a multi - statement line here you would have to list the long set of

conditions many times.

- If you use REM statements, Don’t GOTO or GOSUB directly to that line: You will want

to remove these eventually, either because you are running low on memory, or because

you have finished the program and you don’t want to make it too easy for peeping

adventurers to cheat! When you do this, you don’t need to mess around changing lines in

order to avoid "UNDEF’D STATEMENT ERRORS.”

- Leave out LETs, unnecessary spaces, etc: Not only do these take up extra memory, but

they also take up space in the 64 characters you can have for each line, meaning you

have to start new lines which waste even more memory.

In the next few editions, we will look at adding a load/ save feature to your game,

and the tokenised room descriptions mentioned earlier, then we will examine each

section of the program in detail.

sa 205 26 FT ORAL eit Oe o ы-у ныб ула. зерен маны Аай улда ШЫНАА

SECTION ONE
+

yov NEED ̂ ү
LURT TO SEE
IN RERE. | И georee's

| BEDROOM LOUNGE |

(Pic orca |] WITH BOOKsHELt М” |

қы Ееее ore CON TRE. K

E € An) я e (LISTING) pe (000) 4 2) 1019

| (sTICKY TAPE) (TORCH) gr 3) 1101
(%) 4) 1019

| LAUNDRY = 5) 1 00|

ENTRANCE TO CUP GORRO / 001)
е) GnoT4E "5 ти STEREO / М ой

еее || алғ 0 | жад ne
(EAR MUFFS g) 101!

v а) 001!

4 [А m у / | / N ‚ни ¥ 10) 00 И

Ац. LOCKED 8 Ven RNP “ТИ и 00 10
HALL. LOC Күтенең LAUNOP y CATFLAP /.
pon vmt E КҮТ od JU 12) 0000 |

б; A М (рас) | /, // /^/ ,| 30e!
| оет. (090) 6 ly ЕЕ 14) бон |

| 7 HWOSHING machin) v // w/ / 15) 001 |

4 | 19 ам 2 o00 `
1 y N намы шті EL VANZS T (5 Ы) 0100
ru EN TRANCE | Pitre or TOYS ТР D N 18) 1100

| HALL EJAN НААШ EF aw (0 Ep dw | T EN ja) O10)

5 | j, 20040

wv (W(NPUP movsE) | ваты) __||/^ / 2109 о

FRONT DOOR 7 à RONT 22) 100
2 Со BY a ЗУ сере / ; 2) 1100

| (DOOR) | BUSHES (GARDEN GNOME) 24100

i 4w Ego | 4v E 4v 25) но!

| (LARGE КОСК)

(кеу) | (BONE) (a ASMASK)

VERBS NOUNS ==

2 WE. LSTING
L HELP MAP m н t
| IN V TAQE SEC TION TWO XERBS NOUNS |

| as Book NS WE LIST,
5а С m
| EXAMINE Ee ia TAPE
' LOOK STICKY TAPE ү BOOK |

| DROP GAsmnsk cet e
. LENE MOUSE | Е

| OPEN CAR Ме reg Ре |
READ ЕАО Жо, а ЕТЕ

. UNLOCK BONE гра | | | PONITO рант EXAMINE Q |

| ИАТА ee!
LOOK JUNK |

ЕЖИК Vis BATTERIES KAT Вох

| Do GVISA Torth LOAD бер

| WIND en 22 күш

ae WASHING MPC
E po HINE | MOVEMENT CODES

‚ Кик FOLDER) 0020
EAT STEREO |

` START OOK SHELF 2)0+01
нЕ

бе е 2) 0040
; = BUSHES 4) 20 03 '

OAD Doo Q 0د
_ УФ Doon MAT” Da Awad.

LET?” INVESTIGATE SOUND ON THE м2.

PART ТТ

ру Bob Kitch.

Last time we produced the Star Wars Theme using a few simple BASIC

commands. Let's analyze this action a little further and see what

insight this gives us. Recall that there were a few shortcomings or

limitations in using the SOUND command.

SOUND COMMAND.

Quite a lot happens in the BASIC Interpeter when the SOUND command

is used.

As the Command Interpeter is scanning through a line in the BASIC

Program Statement Table, it is searching for the SOUND token SEH. Upon

finding this token, 1% transfers control to the Verb Action Routine

for the SOUND command located at 2BFSH to 2C71H. Perhaps you would

like to Disassemble this portion of your ROM and decode it? This

section of code looks for the pitch and duration values in the Program

Statement Table that form part of the command.

Ramember that these values must be іп the range of 1 to 31 and О

to 9 respectively. The routine mentioned above, checks these values.

Where does i: pick up the correct frequency and duration to pulse the

Speaker?

Tuo tables of values are embedded in the ROM. A Frequency Table

oczurs from O2CFH to O30CH. These are two-byte entries and correspond

to the notes 42 to D#5. (31 notes and 62 bytes.) At O361H to O37FH

another 31 byte table exists for the 31 tones. These values correct

the duration for the frequency value read from the larger table.

The Verb Action Routine then calls a couple more subroutines in

ROM to switch bits O and S in the Output Latch at 6800H. These are the

"low-level" routines that control the piezo speaker. We are now very

close to the hardware of the VZ.

The low-level code consists of three Subroutines commencing at

3450H to 3483H in ROM. Perhaps some more Disassembly would be

illuminating at this point? The main routine is at 345CH to 3468H. On

entry, the HL register contains the frequency, and the BC register

contains the duration. The entry point from the Verb Action Routine is

at 3469H to 3483H where the "cycling" of the Output Latch occurs to

achieve the sound. A third BEEP routine occurs from 3450H to 345ВН.

This section sets the HL register to 150 and the BC register to 6 to

provide a beep. This sound is heard every time a key is pressed on the

keyboard - so this routine is called quite often.

SOUND EFFECTS PROGRAM.

To illustrate some of these ideas, the accompanying program is

useful. A series of sound effects are generated by manipulating the HL

апа ВС registers of the 780 and by calling the sound routine located

1 2

at 345CH in ROM. Note that this is a distinctly different way of
making a noise compared to the SOUND command in BASIC. Furthermore,
note the variety of sounds that can be produced. The Sound Effects
program is more "interesting" than the previous Star Wars melody.

Sound Effects program uses the USR() statement to connect the

It is an extremely useful and powerful
are familiar with it? It is poorly

The 12 bytes of machine code are set out

The

BASIC program to the ROM calls.
technique. How many of you
explained in the VZ Manuals.

in lines 130 to 180.

“looping” that The program is also set out to illustrate the
This form occurs to place certain values into the HL and BC registers.

of coding clarifies the procedures.

Next time we will discuss directly switching the latch at 6800H
using our own machine code routine - not the one's in ROM. Notice how
we are "getting closer to the hardware" and obtaining more control

over the sound output.

> XK kK K k ÞK DK K kK DK DK DK DK DK DK DK DK DK DK K K K K
> ж ж SOUND EFFECTS ж ж
> ж ж ск Vz +1© ж ж
> ж ж R. B.K. со/гі/ве жж
> ж ж ALTERED 26/8/90 xXx
а K*KRBK, ANDREW WILLOWS x x
> KKKEN CLARKE (NZ) ж ж
» o ok ok ok oK oK oK OK OK OK OK OK OK OK oK oK OK OK OK OK OK ж

KXXXXPOKE IN M/L ROUTINEJX3xXx*x
FOR T%=-28687 TO -28676 :'POKE INTO 8FF1H TO 8FFCH.

READ D%:POKE T%,D%
NEXT T%
PT%=-28685 :'ADDR. FOR PITCH (L-REG)
DR%=-28682 :'ADDR. FOR DURATION (C-REG)
DATA 229 :? PUSH HL
DATA 033,160,000 :' LD HL,OOAO PITCH 1650
DATA 001,003,000 :' LD BC,0003 DURATION 3
DATA 205,092,052 :’ CALL 345C
DATA 225 2” POP HL
DATA 201 2’ БЕТ
POKE 30862, 241: POKE30863,143:’SET 788E/FH TO F1/8F FOR USR().
OK KXMAIN MENU X X x xx

CLS

PRINT: а

РАТАТ" ериде сана Нанна EEA
PRINT СЕВА ЕР Е асп еВ"
РКІМТ”МЕЗауағА: СЕНИН ЕНІ (2151 45423021510 БЕЙ"
РЕТМТ SERS] ЕН ЕВ Ча

мн т £N a C se eld age 01 5e Nee Reds, Sad iac o. es ій

90 UR TELEPHONE ОН ER * 20 PRINT@444, " ";
50 PRINT@448,"ENTER OPTION # ";:INPUT OP$: 10 POKE DR%,3 :'SET DURATION TO 3 ON ENTRY. 20 'XXXXXBRANCH TO CHOICExxxxx
(О IF OPt-"A",1100 ELSE IF ОР$="В", 1200 20 IF OP$="C",1300 ELSE IF OP$="D", 1400 30 IF OP$="E",1500 ELSE IF OP$="F", 1600 IO IF OP$="G6",1700 ELSE IF OP$="H". 19800 jO IF OP$-"I",1900 ELSE IF OP$-"J",2000 0 IF OP$-"K",2100 ELSE IF 0P$-"L",2200 O IF OP$="M",2300 ELSE IF OP$="N", 210 © GOTO320
OO 'XXXXXDECAYING ZOOPXxxxxx
10 CLS:PRINTG232,"DECAYING 700Р" 20 FOR T%=1 TO 255 STEP 4 :'LOWER PITCH - FIXED DURATION. 30 РОКЕ РТУ, ТУ
40 X=USR (0)
50 NEXT T%
50 GOTO 210
OO "XKKKKINCREASING ZOOPKkxKkx 10 CLS:PRINT@232," INCREASING ZOOP" 20 FOR T%=255 TO 1 STEP -4 :'RAISE PITCH - FIXED DURATION. 50 POKE PT%, TY
40 X=USR (0)
30 NEXT TY

30 GOTO 210
JÛ 'XXXX*RANDOM BEEPSKKKxx 0 CLS:PRINT@234,"RANDOM BEEPS" 'O POKE DR%,10 :' CONSTANT DURATION. О FOR Y%=1 TO 50 | :'DO SO REPETITIONS - VARY PITCH. © T4=RND (254) +1
0 POKE PT%,TY,
0 X=USR (0)
O NEXT Y%
© GOTO 210
O 'XXXXXWAVESXXXxxx
O CLS:PRINT@237, "Waves"
S POKE DR%,1 :'FIX DURATION. О РОК YX-1 TO 10 :' DO 10 OSCILLATIONS. FOR TX-1 TO 10 :’ LOWERING PITCH. РОКЕ РТ%,Т%

X=USR (0)
NEXT TY
FOR TX-3O TO 1 STEP -1 :'RAISING PITCH. РОКЕ РТУ,Т%

X-USR (0)
NEXT TX

NEXT Y%
› GOTO 210
à? "XXXXXINCREASING PHASORXxxxx
' CLS8: PRINTG230,"INCREASING PHASOR" | FOR. YA720 TO 1 STEP :” INCREASE STARTING PITCH. EP —1

T4-YX4 TO 1 STEP -| :'DECREASE NUMBER OF TONES. | РОКЕ РТИ, ТУ

Va o шн М Ul v» 14 Q (Il

X=USR (0)
NEXT TY

Ere = же aca

{ a lis S hn ~a 2

o me ee —— un

1570
1580

1600
1610
1620
1650
1640
1620
1660
1670
1680
1700
1710
1720
1750
1740
1750
1760
1770
1780
1790

1800
1810
1820
1830
1840

1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950

1960
1970
1980

1990
2000
2010
2015
2020
2025
2030
2035
2040
2045
2050

2055
2060
2100
2110

NEXT Y%
ЕТ

GOTO 210
ES

'XXXXXDECREASING PHASORJXXEX X

CLS:PRINT@230, "DECREASING PHASOR"

FOR Y%=1 TO 20 -> DECREASE STARTING PITCH.

FOR T%=i1 TO Y% .' INCREASE NUMBER OF TONES.

РОКЕ РТ%,Т% |

X=U3R (0)
NEXT T%

NEXT Y%
GOTO 210
> KKKKKUFO LEAVINGXXXXX

CLS:PRINT@233, "UFO LEAVING"

TH=61 .'GET PITCH.

FOR D%=60 TO 1 STEP -1 <’ DECREASE DURATION.

POKE DR%,D%
РОКЕ PT*,T*
TA-T^-1

X=USR (0)
NEXT D%
GOTO 210
' XXXXXUFO LANDINGXxXxxx*

CLS:PRINTG233,"UFO LANDING"

Т%=1 ; :’SET PITCH.

FOR D%=1 TO 60 :* INCREASE DURATION.

POKE DR*,D*
POKE PT*^,T*
TKETA+1
X=USR (0)

NEXT D%

GOTO 210
' XX XXXBUZZEROOOOOCK

CLS8: PRINTG236, "BUZZER"

POKE DR%,3
POKE PT%, 60
FOR Y%=1 TO 100

X=USR (0)
FOR D%=1 TO 5
NEXT D*

NEXT YA

GOTO 210
” ҰЖЖЖЖӘНІР СІБЕМХХЯХЖ

CLS:PRINT@234, "SHIP SIREN"

POKE DR%,8 :"FIX DURATION.

FOR Y%=1 TO 10 :'DO 10 REPEATS.

FOR T4-200 TO 80 STEP -8:'INCREASE TONE.

POKE PT%,T%
X=USR (0)

NEXT T%
FOR D%=1 TO 150
NEXT D%

NEXT Y~%
GOTO 210
> *xXKKKBURGLAR ALARMKXKKX

CLS:PRINT@233, "BURGLAR ALARM"

:"LOWER PITCH.

:'RAISE PITCH.

:'SOUND TONE 100 TIMES.

: ’ SMALL DELAY.

: ’” DELAY BETWEEN REPEATS.

1 <

ame Aur ri 7 = aaa e mL ч ыт AAT $ ap > SAA ` alr aq. зч. маматайым қ №. aao P — at RAR AO AC i P LR MUR uf nass ns n Mono ы: са Қуан мық wed EAE SN "S
4. А "t ~ 3 > рмен дааа a сн REA TSE A IS IEE SLT SEN ВЕДИТЕ

2390

:’FIX DURATION TO MAX.
:'DO 5 CYCLES.
:' TONE HI.

POKE DR*,255
FOR Y%=1 TO 5

POKE PT%,50
X=USR (0)
РОКЕ РТ%,60
X=USR (0)

NEXT Y%
GOTO 210
'XXXXXPOLICE SIRENDXX XXX
CLS:PRINT@233, "POLICE SIREN"
POKE DR%,9 :’FIX DURATION.
FOR Y%=1 ТО 5 :7DO 5 REPEATS.

FOR T%=200 TO 80 STEP -4
РОКЕ РТУ,Т% :'FAST RISING PITCH.
X=USR (0)

NEXT T%
FOR T%=80 TO 200

POKE PT%,T%
X=USR (0)

NEXT TY
NEXT YA

GOTO 210
' XXXXX TELEPHONEOOGEXX
CLS:PRINT@234, "TELEPHONE"
POKE DR%,15
FOR Y%=1 TO 5

FOR D%=1 TO 2
FOR T%=1 TO 8

>’ TONE LO.

:'SLOW FALLING PITCH.

:'FIX DURATION.
:' DO $5 REPEATS.
:' SOUND DOUBLE RING.
: 700 8 WARBLES.

РОКЕ РТУ, 100 ;'LO ТОМЕ.
X=USR (0)
POKE PT%,50 :’HI TONE.
X=USR (0)

NEXT TX
FOR T4-1TO 50 :'PAUSE BETWEEN DOUBLE RINGS.

.. NEXT TA
NEXT 0%
FOR D%=1 TO 400 : ’ PAUSE BETWEEN REPEATS.
МЕХТ 0% 2

МЕХТ Ү%
БОТО 210

10000 CLS:PRINT"ERASING SOUNDS":ERA"“ SOUNDS"
10010 PRINT"SAVING SOUNDS": SAVE" SOUNDS"
10020 END

This information was sent in by Ben Hobson, who thinks it may be

FAACKEARS AND PIRATES.

ОҒ interest to others.

I have found the problem with
my case DOS.

І

Hi-Mem,

have

оғ

rewrite of Sprite Generator or of EXT. BASIC may be needed.

іс?

SPRITE GENERATOR crashing things. Іп

not tried it, but possibly relocate DOS or Extended Basic
directly after the SPRITE routines, as maybe Sprite Generator uses

it may alter IX or IY registers. Therefor a complete

TRADING POST
EPROMS for EXTENDED DOS. and BASIC

Are available from

Bob Kitch
7 Eurella Str.
KENMORE Q'1d. 4069

FOR SALE

PRINTER GP 100. VZ compatiable. New ribbon. $100.
Apply Editor.

Аы -um

TO SWAP: VZ 300 BQBis (no case or keyboard), Joystick interface with 1.
joystick, 9 x 6116 2k RAM chips, 280A, 2716 EPROM, 2 x 482764 EPROMs,
Plus various ICs, eg 741s138, 741s157. All chips are socketed (except
430A, EPROMS) and are from a defunct microbee. (The VZ300 does not work but
only needs а 014 i.c. Perhaps a good опе пау ое desoldered from one of the.
old-.V2300s the Editor has for salé; ^" 7-^
FOR: VZ200 in working'order. (with or without keyboard)
if-this does not please you PLEASE contact пе. Anyway as I have many other
goodies I will include to make the deal.
Ben Hobson , P.O. BOX 255, QUIRINDI, 2343 or. phone (067) 462076 after 4pm.

4 * k'k

OTHER VZ USER GROUPS
H.V.V.Z.U.G DISKMAG
P.O.Box 161 | Р.О.Вох 600.
JESMOND NSW.2299. Taree NSW. 2430.

CENT.VIC.COMP.Club | BRISBANE VZUG
24 Breen St. 63 Tingalpa St.
BENDIGO VIC 3550 = | WYNUM West. Q'ld. 4178

Graeme Bywater
Р.О.Вох 388
Мог1еу И.А. 6062

ee me : вы: `

ac . Wee Yi vus 22 ағ 4%, p А г ا . .

. . x. M AC . . a. Mraz .

$05 "us : is Sc Hu vui. s ر тағы

. ESSE IET à. ЫЗ :
' "n s à и we u.

. м 20% t tome me emm

: 4. t.t. yo
TEE . 1 i s е Р. 0

“ * ais cos ші r . 223 Я < db gn teria
үн. ae a .. “ 2 t6 0 е. Қым cu ’ i ' mee cya m | ASIDE

$ 3 $24

. «

а“ Щщ kr МАС, бз Уу,

^ gi C Se TE Pg cmm TRS ба ТАНАУ ҒАМ IIR tot mE Pole cO Ir Tool BBA Gites PPL oT CED TOR RE д куы:

" nt

рє

deg

11€

1» к au, ced s qi s ` mE
ғ N FU E fi.” а Е a ` (o Ue dul ` PU...

` із gsm i 5 $ A toco офи А Dd 2 » r^ us

CER Uum de ы: x

"What a day! The computer broke
down and we all had to think!" D

iss

nd LONE ха > Ы

аттты” Е Ж

А1
мір

